新闻动态
NEWS
增材制造:拓扑优化与梯度点阵结构提升零部件附加值
来源: | 作者:佚名 | 发布时间: 2022-06-09 | 519 次浏览 | 分享到:

在先进工程设计中,拓扑优化和点阵结构经常会被同时考虑。近年来,以nTopology为代表的场驱动设计概念使工程师能够实现更高的设计自由度。然而,如何正确使用各种场驱动设计方法却尚无定论。


基于面的点阵结构(如gyroids和其他TPMS结构)具有较高的比刚度,且非常适合增材制造工艺。此外,点阵结构还具有许多其他的性能优势,如较高的换热系数、较好的减震性能和易于控制的刚度。


图片


利用点阵结构的这些优势,我们可以设计出比传统拓扑优化更优的部件。由于目前还没有太多文献清晰并定量地描述点阵结构的功能优势,本文介绍了一种优化点阵结构刚度的方法。


拓扑优化和点阵结构相结合的设计可以使零部件具有更高附加值。在本文中,雅马哈电机的研发工程师长本弘治介绍了如何有效地使用这两种先进的工程设计技术,并通过展示一些简单的例子阐述在实际设计和制造过程中应考虑的因素。


点阵结构分析工具


随着增材制造领域中3D打印技术的快速发展,增材点阵结构在航天航空、船舶、汽车、体育和医疗等行业得到了广泛应用,点阵结构作为一种新型的结构设计,除轻量化特点外,同时还具有优良的比刚度/强度、阻尼减震、缓冲吸能、吸声降噪以及隔热隔磁等功能性特点。

由于点阵含有大量复杂的微观结构,包括胞元类型和几何尺寸等参数,导致仿真计算工作量巨大,传统有限元分析已经无法适用。因此,经过多年的仿真计算积累和努力探索,安世亚太自主开发了一款专业用于增材点阵结构仿真分析的软件,即Lattice Simulation。

Lattice Simulation是一款用于增材点阵结构分析的工具,具有用户自定义和内置点阵结构设计两种方式,已集成在ANSYS add-in扩展工具中。基于多尺度算法,用户可以采用等效均质化技术对点阵结构进行有限元分析。并且提取非均质化点阵结构的等效材料参数,在均质化等效实体模型宏观力学分析后,可以通过局部分析对胞元结构进行详细的应力校核。

Lattice Simulation提供增材点阵结构在有限元仿真中涉及的相关分析功能:

  • 均质化分析:基于胞元结构类型及在空间上的周期排列特性,进行均质化计算,提取等效实体的材料力学特性。

  • 宏观分析:采用均质化分析得到的等效材料数据,并对等效实体点阵结构进行力学分析,校核点阵结构刚度性能。

  • 细观校核:考虑胞元外部边界条件(采用应变加载),对其进行详细的应力分析,校核点阵胞元结构强度性能。 

Lattice Simulation典型案例

(1)某点阵结构支架仿真分析

(2)某点阵轻量化结构分析

(3)某压力容器优化设计


下面是一些实际应用中的设计和制造考虑因素,可以帮助我们扩展这个简单的结构模型,并将其用于其他案例中。


1、自动参数优化


点阵结构的刚度性能取决于许多设计参数:拓扑优化密度阈值、选定的点阵单胞、细胞大小、杆的直径、外壳厚度。


参数优化的作用是找到它们的最佳组合。nTopology具有command-line接口 (nTopCL),可以与modeFrontier等工具连接来执行优化计算。


2、模拟结果与实际产品的偏差


模拟结果表明,点阵结构具有优越的比刚度。然而在现实中可能会出现一些偏差,导致制造零件的刚度不同于分析的结果。这种差异主要是由增材制造过程中的内部缺陷引起的。


这种偏差在基于面的点阵结构(如gyroids和其他TPMS结构)中尤为明显。研究表明,SLM方法制造的测试件的实际刚度约为分析结果的30%至56%。


因此,有必要修改设计,以处理制造偏差问题,以确保实际产品的刚度。一般采取的措施是通过提高相对密度,以及更严格的质量控制减少制造过程中的缺陷。


3、拓扑优化是否是最正确的工具?


关于计算方法,一些研究人员指出虽然基于变密度方法的拓扑优化提供了较为合理的结构形式,但从数学上讲,它并不严格正确。随着先进的工程设计工具和增材技术的发展,现在可以设计和制造密度介于0到1之间的区域密度。因此,可能需要基于同质化方法的拓扑优化算法,从而获得真正最佳的解决方案。